Abstract

Nanoscale properties at interfaces play a key role in the colloidal stability of emulsions and other soft matter materials where physical properties need to be controlled from the nano to macroscopically visible length scales. Our molecular level understanding of oil-water interfaces arises mostly from results at extended interfaces and the common view that emulsions are stabilized by a large number of surfactant molecules at the droplet's interface which, however, has been recently challenged. In this work, we show that the particle size and the curvature of oil droplets at the nanoscale is of great importance for the interface adsorption of dodecyl sulfate surfactants and possible counterion condensation at the charged hexadecane-water interface. Using second-harmonic scattering, we have studied the surface charge of oil droplets in nanoemulsions where we systematically varied the particle size R between 80 and 270 nm and demonstrate that the surface charge density σ changes drastically with size: For sizes >200 nm, σ is similar to what can be expected at flat extended interfaces, while σ is dramatically reduced by almost an order of magnitude when the particle size of the oil droplet is 80 nm. Using a theoretical approach that considers counterion condensation, we quantify the nanoscale effects on the change in surface charge with particle size and find excellent agreement with our experimental result. Modeling of the experimental results also implies that the charge per particle remains constant and depends on a critical balance of surfactant adsorption and ion condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.