Abstract

This paper presents a method of a nano-positioning control for the high precision focusing of a doubled ellipsoidal condenser reflective mirror using 5-axis manipulator. We have developed the compact vertical type of soft X-ray microscopy system with 50nm resolution for biomedical application. This microscopy system is composed of a laser plasma x-ray source, doubled ellipsoidal condenser reflective optics, diffractive zone plate optics and MCP coupled with CCD to record an x-ray image. The X-ray source was focused on a sample by a doubled ellipsoidal condenser reflective mirror. X-ray source focusing will increase the photon density in the object plane and is very important to approach high resolution imaging. Required degree of freedom (DOF) of optics aligner in X-ray microscope is dependent on the kind of optics, but generally 5-DOF is needed. We used 5-axis manipulator that consists of three linear motions (X, Y and Z) and two tilting motions (θx, θy). A linear translation stage is adopted a kind of DC motor with a linear resolution 50nm and travel range of 5mm. The mechanism was controlled with PID controller augmented with closed feedback loop for precision control. A two axis tilt stage is employed a design resolution of 0.23μrad and tilt range of ±7deg. We have designed 5-axis manipulator for the precision position control of condenser mirror optics and have developed to control algorithm by inverse kinematics. The performance of the proposed 5-DOF manipulator is evaluated by using a laser interferometer system with two plane mirror reflectors. The experimental results are depicted in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.