Abstract
Engineering solid state quantum systems is amongst grand challenges in realizing integrated quantum photonic circuitry. While several 3D systems (such as diamond, silicon carbide, zinc oxide) have been thoroughly studied, solid state emitters in two dimensional (2D) materials are still in their infancy. In this talk I will introduce hexagonal boron nitride (hBN) as a promising layered material that hosts ultra bright quantum emitters. I will present several avenues to engineer these emitters in large exfoliated sheets, multilayers and 2D monolayers using top down and bottom up approaches. I will also discuss potential atomistic structures of the defects supported by density functional theory. I will then highlight promising avenues to integrate the emitters with plasmonic and photonic cavities to achieve improved collection efficiency and Purcell enhancement. These are fundamental experiments to realize integrated quantum photonics with 2D materials. I will summarize by outlning challenges and promising directions in the field of quantum emitters and nanophotonics with 2D materials and other wide band gap materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.