Abstract

Ultrafine nanometer-scale iron-based catalyst precursor powders were generated using two novel technologies, the rapid thermal decomposition of precursors in solution (RTDS) and the modified reverse micelle (MRM) processes. The powders were characterized according to their phase and crystallite size and were evaluated for activity toward C-C bond scission using the model compound, naphthylbibenzylmethane, in the presence of elemental sulfur and 9,10-dihydrophenanthrene. The catalytic activities of the powders were found to be strongly dependent on their crystallographic phase. RTDS magnetite, six-line ferrihydrite, and ferric oxyhydroxysulfate were found to have very high activity toward conversion of the model compound whereas two-line ferrihydrite and hematite were determined to be poor or mediocre catalyst precursors

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.