Abstract

Nanoparticulate functional materials offer manifold perspectives for the increasing miniaturization and complexity of technical developments. Nanoparticles also make a major contribution to utilization of materials that is sparing of natural resources. Besides these obvious aspects, however, the importance of nanoparticles is due to their fundamentally novel properties and functions. These include photonic crystals and efficient luminophors, single particles and thin films for electronic storage media and switching elements, magnetic fluids and highly selective catalysts, a wide variety of possibilities for surface treatments, novel materials and concepts for energy conversion and storage, contrast agents for molecular biology and medical diagnosis, and fundamentally novel forms and structures of materials, such as nanocontainers and supercrystals. Creating high-quality nanoparticles requires that numerous parameters, involving the particle core and surface, colloidal properties, and particle deposition, are taken into consideration during synthesis of the material. An appropriate characterization and evaluation of the properties requires the incorporation of a wide range of expertise from widely differing areas. These circumstances are what challenges and appeals to the nanoscientist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.