Abstract

Vaccination plays a crucial role in the control of infectious diseases, but often fails to eradicate certain refractory infections for which the development of an effective vaccine is eagerly desired but elusive. In many cases, failure in developing a vaccine is attributed to the inability of the candidates, especially among subunit vaccines, to evoke appropriate immuno-responses for establishing humoral as well as cellular immunity. In past decades, nanoparticles (NPs) sizing from 10 to 500 nm, such as liposomes, inorganic or metal NPs (iNPs), viruslike particles (VLPs), emulsions, immune-stimulating complexes (ISCOMs), and polymeric NPs, have been developed a potential carrier for vaccines to stabilize and deliver the adjuvant and antigens, thus forming proper vaccine adjuvant-delivery systems (VADSs). In particular, many NPs are rationally designed according to distinct cellular features and, therefore, are specifically engineered with functional materials so that they can deliver vaccine ingredients to target antigen-presenting cells (APCs) while directing immunoresponses against antigens along a specific Th1 (T helper type 1) and/or Th2 pathway to establish robust cellular and antibody immunity. In addition, a variety of NP-based VADSs are suitable for mucosal immunization, which contributes to systemic and, particularly, topical immunity, thus forming a dual barrier to pathogen invasion. This paper describes different NP-based VADSs designed for delivering vaccines, and evaluates their potential in the preparation of new products that can be used for prophylaxis against pathogens via different immunization routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.