Abstract
The development of electrochemical DNA biosensors occurred by applying different organically coated Mn-NPs such as MnCO3@OAm, MnCO3@TEG and MnO2/Mn2O3@TEG, as well as naked MnCO3 NPs (where OAm = oleylamine and TEG = tetraethylene glycol). The detection performances of PGEs were modified with different types of Mn-NPs, according to the guanine signal magnitudes obtained after double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) immobilization at these surfaces. DNA interaction studies were realized using UV-vis, circular dichroism (CD), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques. In addition, a 3- to 5.4-fold increase in guanine response in the presence of dsDNA and a 2.3-fold increase in the presence of ssDNA were obtained with the developed biosensor. The increased signals in DNA immobilization at the electrode surfaces modified with Mn-NPs compared to bare PGE clearly show that the modification of Mn-NPs increases the electroactive surface area of the electrode. The detection limit (LOD) of dsDNA was calculated as 7.86 μg·L−1 using the MnO2/Mn2O3@TEG type of the Mn-NP-modified biosensor, while the detection limit of ssDNA was calculated as 3.49 μg·L−1 with the MnCO3@OAm type Mn-NP-modified biosensor. The proposed sensor was applied to a human DNA sample where the amount of dsDNA extract was found to be 0.62 ± 0.03 mg·L−1 after applying the MnO2/Mn2O3@TEG type of Mn-NP-modified biosensor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have