Abstract
Surface defects on highly oriented pyrolytic graphite (HOPG) were controllably produced by bombardment with Cs+ ions at various incident kinetic energies ranging from 0.3 to 10 keV and at various dose densities. Defects in the HOPG created by Cs+ ion impacts were subsequently oxidized at 650 °C in air to produce nanometer-size monolayer and multilayer molecule corrals (pits). The controlled production of both monolayer and multilayer pits on HOPG bombarded with energetic Cs+ ions was realized and studied by scanning tunneling microscopy (STM). The pit density, pit yield, pit diameter, and pit depth can be well controlled by varying the experimental conditions. Multilayer pits can be controllably produced using Cs+ ion bombardment at higher kinetic energies, and monolayer pits can be produced using low-energy Cs+ ion bombardment. The presence of both monolayer and multilayer pits on the same HOPG samples makes the direct comparison of pit growth rates possible under exactly the same conditions. The measure...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.