Abstract

We have investigated nanoindentation-induced plastic deformation in amorphous germanium (a-Ge) prepared by high-energy self-ion implantation. Using cross-sectional transmission electron microscopy, micro-Raman spectroscopy, and force-displacement curve analysis, we find strong evidence for a pressure-induced metallic phase transformation during indentation. Crystalline diamond-cubic Ge-I is observed in residual indents. Relaxed and unrelaxed structural states of a-Ge exhibit similar behavior on loading, but transform at different pressures on unloading. Both forms are markedly softer mechanically than crystalline Ge. These results assist in furthering the understanding of the intriguing phenomenon known as “explosive crystallization.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.