Abstract

Background: Nanoheterostructures of ZnFe2O4–ZnO is a potential functional material synthesized by various complicated synthesis processes. However, most of the processes are not at all cost effective because these generally require high-temperature treatment as well as long reaction time and complicated experimental procedure. Thus, a simple, low cost and highly efficient synthesis process is still highly required. Objective: The aim of the present study is to synthesize ZnFe2O4–ZnO nanoheterostructures by a simple solution process vis-à-vis to characterize the structural and optical properties of the sample. Methods: Nanoheterostructures of ZnFe2O4 decorated on ZnO nanorods (ZFZO) have been synthesized by two-step low-temperature solution process in the presence of hydrazine hydrate. Results: X-ray diffraction study showed the presence of hexagonal ZnO and cubic ZnFe2O4 spinel. Transmission electron microscopic analysis confirmed the formation of nanoheterostructures of ZnFe2O4 decorated on ZnO nanorods. The optical property of the sample was characterized by UVVisible spectroscopy. Moreover, the oxidation states of the elements were examined by X-ray photoelectron spectral studies. A probable formation mechanism of the nanoheterostructures was drawn. Conclusion: This simple solution based synthesis process is found to be an easy and cost- effective synthesis strategy as realized from the characterizations of structural and functional properties of the synthesized samples of ZnFe2O4–ZnO nanoheterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.