Abstract

We demonstrate a gold nanogap electrode platform that can rapidly create a linear array of biological particles by low-voltage dielectrophoresis (DEP). We further combine microfluidic buffer exchange to introduce protein molecules in high-conductivity solutions while trapping and immobilizing particles. The nanogap between the gold electrodes enables low operating voltages that prevent unwanted Joule heating in high-conductivity buffers. This platform is used to trap bioparticles composed of lipid membranes such as spherical supported lipid bilayers and brain-derived myelin particles, followed by detection of protein binding to specific membrane-bound receptors. We use bioparticles with different sizes, physicochemical properties, and origins to demonstrate a platform that can be used to study a variety of biomolecular interactions. The low-power linear DEP trap combined with microfluidic buffer exchange has potential to enable a portable biosensing platform to rapidly concentrate rare biological particles and perform on-chip binding assays with improved detection limits in physiological buffers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.