Abstract

The ability to form ordered nanostructures at the wafer level with low cost methodologies has represented a challenge in the last decade in many research fields spanning from nanoelectronics to photovoltaics (PVs). For the latter application the nanostructures have demonstrated interesting capabilities for exploiting the quantum effects in terms of efficient visible light absorption. To fabricate ordered nanostructures many solutions have been proposed but they provide feature densities lower than 109 cm−2 or present high fabrication costs. We propose a wafer level and low-cost Lithography based on block CoPolymers self-assembling (LCP), which allows the formation of nanofeatures controlled down to 10 nm and density higher than 5 × 1010 cm−2. We propose to use this technique to form radial junctions in nanoholes for solar cells. The approach is similar to that of the nanowires, i.e., it decouples the optical path of the visible photons from the electrical path of the carriers, but since the one-dimensional (1D) structures are embedded inside the bulk of the wafer the structure is more robust and allows easier implementation. To form the junction inside the nanoholes a novel strategy based on the deposition of monolayers of dopant-containing molecules is proposed. This technique allows to obtain shallow and controlled junction depths with peak carrier concentrations of about 1019 cm−3 for both n- and p-type doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.