Abstract

Owing to their low density, dielectric constant, thermal conductivity, high porosity and chemical inertness, monolithic aerogels could be useful in a variety of electronic, optical and chemical applications [1]. However, practical implementation has been slow, because aerogels are fragile, environmentally sensitive (hydrophilic) and most importantly, the final stage of their preparation involves supercritical fluid (SCF) extraction [1c]. It is reported herewith that for a nominal 3-fold increase in density, typical polymer crosslinked silica aerogels are not only stronger (> 300×) and less hydrophilic (< 10×) than the underlying silica backbone, but they can also withstand the capillary forces exerted upon their nanostructured framework by the residing meniscus of selected solvents, and thus they can be dried under ambient pressure without need for supercritical fluid (SCF) extraction. The best solvent identified for that purpose is pentane, and the resulting aerogels are both microscopically and macroscopically identical to their SCF-CO2 dried counterparts. Being able to dry monolithic crosslinked aerogels without SCF extraction is expected to facilitate their commercial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.