Abstract

ABSTRACTTo achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, knowledge of elastic and electrostatic field distributions below the tip is required. The exact closed form solution of the coupled electroelastic problem for piezoelectric indentation is derived and used to obtain the tip-induced electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM imaging mechanism. These solutions are reduced to the point charge/force behavior for large separations from contact, and the applicability limits and charge/force magnitude for these models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.