Abstract

It was recently shown that the introduction of nanodiamond (ND) into a superconducting metal-organic deposited YBa2Cu3O7-δ (YBCO) film produces an increase in critical current density in self-field conditions (B = 0 T). Such improvement appears to be due to the formation of denser and smoother films than the samples deposited without ND. This paper presents the work done to understand the role of ND during YBCO nucleation and growth. A detailed study on YBCO+ND films quenched at different temperatures of the crystallization process was carried out. Results showed that the reaction responsible for YBCO production appeared effectively affected by ND. In particular, ND stabilizes one of the YBCO precursors, BaF2(1-x)Ox, whose conversion into YBCO requires a prolonged time. Therefore, the YBCO nucleation is slowed down by ND and begins when the experimental conditions favor both thermodynamically and kinetically the formation of YBCO along the c-axis. This effect has important implications because the growth of a highly epitaxial c-axis YBCO film enables excellent superconducting performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.