Abstract

In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli.PACS codes: 61, 76, 81Electronic supplementary materialThe online version of this article (doi:10.1186/s11671-015-0989-x) contains supplementary material, which is available to authorized users.

Highlights

  • Calcium-deficient hydroxyapatite enriched with various ions, i.e., of carbonates, magnesium, sodium, or manganese, is the main inorganic component of mineralized tissues [1, 2]

  • Preparation of samples Hydroxyapatite doped with selenite and manganese II ions was prepared with the standard wet method using the reagents Ca(NO3)2 · 4H2O, (NH4)2HPO4, Na2SeO3 · 5H2O, and (CH3COO)2Mn as sources of calcium, phosphorus, selenium, and manganese, respectively

  • It can be concluded that the presence of manganese ions does not significantly influence the size or morphology of hydroxyapatite crystals, whereas selenite ions make the crystals smaller and change their shape

Read more

Summary

Introduction

Calcium-deficient hydroxyapatite enriched with various ions, i.e., of carbonates, magnesium, sodium, or manganese, is the main inorganic component of mineralized tissues (bone, tooth enamel, dentin, and cementum) [1, 2]. Synthetic hydroxyapatite is one of the most important materials used in bone implant surgery because of its unique properties such as biological activity, biocompatibility, and very good adaptation under in vivo conditions [3, 4]. The primary feature of hydroxyapatite is its ability to be doped with various ions in order to change physical, chemical, and biological properties of apatites [5]. Recommended daily intake of this mineral nutrient is 55 μg for both men and women [6]. It has been associated with many health benefits in humans and other

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.