Abstract

The ignition temperature and combustion behavior are key parameters for the performance of energetic nanocomposites. This article aims to obtain nanocomposites with low ignition temperature and high reactivity by incorporating titanium nanoparticles (nTi) to aluminum nanoparticles (nAl)-based thermites. The ignition temperature, reactivity, and combustion efficiency of Al/xTi/oxidizer composites were investigated via temperature-jump (T-jump), combustion test, and calorimeter. The results reveal that the ignition temperature of Al/xTi/oxidizer composites shifted down ~90 °C, ~140 °C, and ~220 °C by adding 50 mol.% nTi (in the fuel) into nAl/KClO4, nAl/K2S2O8, and nAl/KIO4 respectively. The reactivity of nAl/K2S2O8 and nAl/KIO4 also increased by 50% after adding 30% nTi. However, the combustion efficiency of nAl-based energetic composites reduced with the increasing contents of nTi. This study demonstrates that Al/xTi/K2S2O8 and Al/xTi/KIO4 nanocomposites with low ignition temperature, high reactivity, and moderate combustion efficiency are good candidates for energetic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.