Abstract

Nanocomposite scaffolds were fabricated from poly (ε-caprolactone) (PCL), Poly (2-hydroxyethylmethacrylate) (PHEMA), and Apacite (Apatite-calcite) nanostructures (15 and 25wt%). The nanoscale structure, physical and chemical properties, mechanical properties, hydrophilic behavior, degradability and osteogenic properties of the fabricated scaffolds were evaluated. The results showed that the mechanical strength, degradation, wetting ability, and mechanical strength of PCL-PHEMA scaffolds significantly increases upon inclusion of Apacite nanoparticles up to 25wt%. Accordingly, the best mechanical values (E~7.109MPa and σ~0.414MPa) and highest degradability (32% within 96h) were recorded for PCL-PHEMA scaffolds containing 25wt% of Apacite. Furthermore, highest porosity and roughness were observed in the PCL-PHEMA/25% Apacite as a result of the Apacite nanoparticles inclusion. There was no cytotoxicity recorded for the fabricated scaffolds based on the results obtained from MTT assay and acridine orange staining. Alkaline phosphatase activity, calcium content quantification, Van Kossa staining, FESEM and real time PCR tests confirmed the biomineralization, and the differentiation potential of the nanocomposite scaffolds. Overall, the 3D structure, optimum porosity and balanced dissolution rate of PCL-PHEMA/25% Apacite providing a balanced microenvironment resulted in improved cell adhesion, cell behavior, and replication, as well as osteogenic induction of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.