Abstract

The design of conductive hydrogels integrating anti-fatigue, high sensitivity, strong mechanical property and good sterilization performance remains a challenge. We innovatively introduced metal coordination in covalently crosslinked Pluronic F-127 micelle network and synthesized nanocomposite conductive tough hydrogel through the combination of covalent crosslinking, metal coordination and silver nanowire reinforcement. Compared with pure diacylated PF127 hydrogel (PF127), the tensile strength of PF-AA-AM-Al3+/Ag0.25 hydrogel reaching 1.4 MPa was about 10 times than that of PF127. The toughness of PF-AA-AM-Al3+/Ag0.25 reaches 1.88 MJ/m3. Compared with PF-AA-AM-Al3+, the introduction of silver nanowires increased the fatigue life of PF-AA-AM-Al3+/Ag0.25 by 200% (31837 cycles), 170% (12804 cycles) and 1022% (511 cycles) under 100%, 120% and 150% ultimate tensile strains, respectively. Besides, the PF-AA-AM-Al3+/Ag0.25 showed strain sensitivity to small deformation (Gauge factor = 2.42) in wearable tests on hands and knees. In addition, the PF-AA-AM-Al3+/Ag0.25 had good cytocompatibility and antibacterial performance that bacteria killing ratio of 98% to S. aureus and 99% to E. coli. Finally, a viscoelastic numerical constitutive model was established based on finite element method to study the damage failure history of the material. Comparative analysis showed that local stress concentration was the main factor leading to the failure of hydrogel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.