Abstract

Oil reservoir exploration is booming, given the increasing energy demand worldwide. The existence of Impermeable Regions (IR) in the oil reservoir (i.e., underground areas that allow only few hydrocarbons-collecting fluids to pass through) still hinders current production performance to a great extent. Research efforts have been invested into IR detection and mapping. The state of the art solution [1] leverages nanoscale sensor networks to approximately characterize the location of a single IR in the underground oil reservoir. However, the characterization accuracy is rather low. In addition, existing solutions are not applicable to more heterogeneous reservoirs, which reflects, in fact, a more realistic problem scenario. In this paper, we investigate and address the limitations of state of the art solutions in two aspects: 1) we provide a sub-terahertz (THz) communication channel to reflect realism of nanocommunication in the underground; 2) we develop a sensor path (i.e., simulated streamlines along which sensors are assumed to flow) reconstruction workflow to map a more heterogeneous reservoir with more IRs. Through simulations, we show that our proposed solution achieves an improvement of IRs mapping performance, when compared to the state of the art solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.