Abstract

AbstractClean‐water harvesting through solar interfacial evaporation technology has recently emerged as a strategy for resolving global water scarcity. In this study, rapid carbon‐dioxide‐laser‐induced carbonization and facile ice‐templating is employed to construct a cellulose‐based solar evaporator bearing a hybrid multi‐layer micro‐/nano‐architecture (i.e., a laser‐induced carbon (LC) nanostructure and a cellulose aerogel (CA) nano/microstructure). The LC exhibits a light‐absorbing/photothermal nanoporous carbon structure that offers high light absorption and multiple light scattering. Additionally, the CA exhibits numerous nanopores and unidirectional microchannels that facilitate rapid water transport via capillary action. This hybrid LC/CA micro‐/nano‐architecture enabled rapid vapor generation with an average water evaporation rate (ν) of 1.62 kg m−2 h−1 and an evaporation efficiency (η) of 66.6%. To further enhance the evaporation performance, a polydimethylsiloxane (PDMS) layer is coated onto the side of the LC/CA evaporator to increase its floatability in the simulated water; ν and η of the PDMS‐coated LC/CA evaporator (LC/CA/PDMS) increased to 1.9 kg m−2 h−1 and 83.8%, respectively. Additionally, the LC/CA/PDMS evaporator exhibited a high ν value of 1.68 kg m−2 h−1 in simulated seawater, originating from excellent resistance to salt accumulation via its self‐cleaning ability. Furthermore, the solar evaporator exhibited scalability for fabrication as well as biodegradable properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.