Abstract

Nanocellulose, as the most abundant natural nanomaterial with sustainability, biodegradability, and excellent mechanical properties, has been widely applied in modern electronic systems, particularly, in the flexible electrochemical energy storage devices. Herein, a reduced graphene oxide (RGO)/cellulose nanocrystal/cellulose nanofiber (RCC) composite membrane was prepared by using a one-pot method. Compared to the pure RGO membranes, the RCC composite membranes exhibited better mechanical properties and hydrophilicity. Furthermore, due to the synergistic effect of nanocellulose and RGO sheets, the RCC composite membrane exhibited a specific capacitance as high as 171.3 F·cm−3. Consequently, a nanocellulose-based symmetric flexible all-solid-state supercapacitor (FASC) was constructed, in which two RCC composite membranes served as electrodes and a porous cellulose nanofiber membrane acted as separator. This fabricated FASC demonstrated a high volumetric specific capacitance of 164.3 F·cm−3 and a satisfactory energy density of 3.7 mW·h·cm−3, which exceeded that of many other FASCs ever reported. This work may open a new avenue in design of next-generation nanocellulose based, sustainable and flexible energy storage device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.