Abstract
Recently, the fabrication of semicrystalline polymer foams with a nanocellular structure by supercritical fluids has been becoming a newly developing research hotspot, owing to their peculiar properties and prospective applications. In this work, a facile and effective isothermal crystallization-induced method was proposed to prepare nanocellular semicrystalline poly(lactic acid) (PLA) foams using CO2 as a physical blowing agent. Styrene–acrylonitrile–glycidyl methacrylate (SAG) as a chain extender (CE) was introduced into PLA through a melt-mixing method to improve the crystallization behavior and melt viscoelasticity of PLA. The chain extension reaction between PLA and SAG occurred successfully as well as the branching and micro cross-linking structures were generated in chain-extended PLA (CPLA) samples, which were confirmed by Fourier transform infrared spectra, gel fraction, and intrinsic viscosity measurements. Owing to the nucleation effect of branching points and the restricted movement of PLA molecular chains by the formation of branching and/or microcross-linking structures, a large number of small spherocrystals were generated in CPLA samples, which was beneficial to produce nanocells. Nanocellular CPLA foams were prepared successfully, when the foaming temperature was 125 °C. As the SAG content increased, the cell size of various PLA foams decreased from 364 ± 198 to 249 ± 100 nm and their volume expansion ratio increased from 1.15 ± 0.05 to 2.22 ± 0.01 times, gradually. When the foaming temperature increased from 125 to 127 °C, an interesting transition from nanocells to microcells could be observed in CPLA foam with the CE content of 2 wt %. Finally, the formation mechanism of nanocells in various PLA foams was proposed and clarified using a schematic diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.