Abstract

This study aimed to prepare a hybrid of cation-exchangeable stevensite-like magnesium-layered silicate and a synthetic mica (fluorophlogopite). The magnesium-layered silicate was synthesized via the reaction of magnesium chloride with colloidal silica in the presence of urea under hydrothermal conditions (100 °C or 140 °C for 2 d). The cation-exchange capacity of the stevensite-like silicate was influenced by the operating temperature; specifically, a higher capacity was achieved at a higher temperature (0.42 meq/g stevensite at 140 °C and 0.36 meq/g at 100 °C). The capacity was also affected by the solution pH, which was directly related to the growth rates of the octahedral and tetrahedral sheets. Upon addition of fluorophlogopite into the starting mixture, direct crystallization of the stevensite-like layered silicate occurred on the fluorophlogopite particles via hydrothermal treatment for possible applications as a cosmetic pigment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.