Abstract

We present a new type of spherical polymer brush particles that consist of a solid poly(styrene) core (diameter: ca. 100nm) onto which chains of a bottlebrush polymer have been densely grafted. These systems were prepared in aqueous dispersion by photo emulsion-polymerization using the macromonomer poly(ethylene glycol) methacrylate (PEGMA). In opposite to conventional spherical polyelectrolyte brushes carrying linear polymer chains, the system prepared here has a shell consisting of regularly branched chains (‘nano-tree’-type morphology). The branches consist of oligo(ethylene glycol) chains (n=13) terminated by a hydroxyl group. We demonstrate that these particles can be used as nanoreactors for the generation and immobilization of well-defined silver nanoparticles. Cryo-TEM and FESEM images show that Ag nanoparticles with diameter of ∼7.5±2nm are homogeneously embedded into the PS–PEGMA brushes. Moreover, the composite particles exhibit an excellent colloidal stability. The catalytic activity is investigated by monitoring the reduction of 4-nitrophenol by NaBH4 in presence of these silver nano-composite particles. The rate constant kapp was found to be strictly proportional to the total surface of the nanoparticles in the system. The study of the temperature dependence shows that the rate constants kapp obtained at different temperatures leads to an activation energy of 62kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.