Abstract

Over-lithiated oxide has been attracting enormous attention due to its high work voltage and high specific capacity. However, the bottlenecks of low initial coulombic efficiency and voltage decay block its industrial application. In this paper, nano-sized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 was successfully synthesized by a mechano-chemical activation-assisted microwave technique, in which Mn-Co-Ni-based micro spherical precursor by conventional co-precipitation method was ball milled with Li2CO3 as lithium source and alcohol as dispersant into nano size and then sintered by microwave to obtain the final product. The as-prepared sample sintered for 30min exhibited a superior electrochemical performance: almost no capacity fading after 100 cycles at 0.1C. The rate performance was also improved significantly and the one sintered for 30min delivered a discharge capacity of 239, 228, 215, 193mAhg−1 at 0.1C, 0.2C, 0.5C and 1C respectively. The distinctive electrochemical performance benefits from the uniform nano-sized particle distribution and good electrode kinetics. It is concluded that such mechano-chemical activation-assisted microwave technique featuring high time and energy efficiency can be considered as one of the dominant routes to realize the industrialization of over-lithiated oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.