Abstract
This study demonstrates, for the first time, the conversion of waste rice noodles (WRN) into a cost-effective, nano-silver-loaded activated carbon (Ag/AC) material capable of efficient adsorption and antibacterial activity. The fabrication process began with the conversion of WRN into hydrothermal carbon (HTC) via a hydrothermal method. Subsequently, the HTC was combined with silver nitrate (AgNO3) and sodium hydroxide (NaOH), followed by activation through high-temperature calcination, during which AgNO3 was reduced to nano-Ag and loaded onto the HTC-derived AC, resulting in a composite material with both excellent adsorption properties and antibacterial activity. The experimental results indicated that the incorporation of nano-Ag significantly enhanced the specific surface area of the Ag/AC composite and altered its pore size distribution characteristics. Under optimized preparation conditions, the obtained Ag/AC material exhibited a specific surface area of 2025.96 m2/g and an average pore size of 2.14 nm, demonstrating effective adsorption capabilities for the heavy metal Cr(VI). Under conditions of pH 2 and room temperature (293 K), the maximum equilibrium adsorption capacity for Cr(VI) reached 97.07 mg/g. The adsorption behavior of the resulting Ag/AC fitted the Freundlich adsorption isotherm and followed a pseudo-second-order kinetic model. Furthermore, the Ag/AC composite exhibited remarkable inhibitory effects against common pathogenic bacteria such as E. coli and S. aureus, achieving antibacterial rates of 100% and 81%, respectively, after a contact time of 4 h. These findings confirm the feasibility of utilizing the HTC method to process WRN and produce novel AC-based functional materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.