Abstract

Superior structural capabilities and lightweight of carbon-fibre-reinforced polymer composites have made their applications increasingly noticeable particularly in the aerospace and automotive industries for reduced fuel consumption. Anisotropic and heterogeneous features of these materials, however, have been prohibiting the application of laser cutting on these materials in industrial scale. In the present study the thermal degradation characteristics in laser cutting of these materials are investigated with a nano-second pulsed diode pumped solid state Nd:YAG. A statistical analysis was performed for the optimisation of the process parameters. Furthermore, quality improvement was achieved by the use of low oxygen content assistant gas simultaneously with the inert gas shield. The controlled presence of oxygen as a burning mechanism reduced the fibre pull out up to 55% at the same time with a high processing rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.