Abstract

The use of additives to prepare warm asphalt has been a topic of intensive study recently; however, their effect on the nano-mechanical properties of binder material has yet to be studied. This study presents an investigation into the impact of warm additives Sasobit (Flakes, Organic) and Rediset WMX (Pastilles, Organic-Chemical) and LQ (Liquid, Chemical) on topography, modulus and adhesion of warm-modified bituminous binders using atomic force microscopy (AFM) with the PeakForce Quantitative Nanomechanical Mapping (PFQNM) mode. In this study, the warm additives were incorporated into two binder grades, namely 40/60 and 100/150 Pen. PFQNM results show that Sasobit significantly increased the modulus of the binders at the nano-scale by approximately seven times and five times for 40/60 and 100/150 Pen, respectively. Surprisingly, Sasobit also improved the adhesion properties of the bitumen, with the adhesion force increasing from 17.7 to 35.26 nN and from 21.56 to 59.01 nN for 40/60 and 100/150 Pen, respectively. Both Rediset WMX and LQ also improved the adhesion characterisations of warm-modified bituminous binders by around 110% and 50%, respectively. However, the elastic modulus only increased using Rediset WMX because Rediset LQ did not alter the binder properties of net bitumen as it has no effect on the morphological structure of bitumen. In summary, this study provides new insight into the behaviour and response of virgin and modified bitumen, with particular reference to adhesion and modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.