Abstract

Hybrid composite bioparticles modified with stable and radioactive gold nanoparticles were prepared via reduction of tetrachloroauric acid within Lactobacillus rhamnosus cells. The resulting biocomposite material was characterized using a number of physicochemical techniques, including microscopic, spectroscopic and thermal methods.The bacterial particles act as a type of template for gold deposition. Gold nanoparticles of approximately 3.7 nm diameter are formed and are uniformly distributed within the bacterial cell, including its hydrogel outer shell. For radioactive gold-198, the β− radiation emitted from the biocomposite particles can be used for therapeutic purposes, as demonstrated in vitro in cancer cell cultures. The antitumor activity can be further enhanced by incorporation of doxorubicin, a cytostatic drug, within composite particles. The cell viability data indicate the considerable synergistic effect of β− radiation and doxorubicin on breast cancer cells (MCF-7). The antitumor action of the biocomposite particles is very promising for new anticancer therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.