Abstract

The hydrogen desorption from MgH 2 – Mg 2 NiH 4 phase mixtures prepared under different ball milling conditions has been investigated and correlated with the samples microstructure. SEM, XRD and XPS were performed to explore the microstructure in order to ascertain the reciprocal influence of the two phases on the de-hydrogenation reaction, and in particular on the hydrogen desorption temperature. Ball milling imparts different microstructures to the phase mixtures according to the adopted processing parameters. The resulting microstructure influences the hydrogen desorption which appears to occur by a limited number of well-defined channels at characteristic temperatures. A microstructural interpretation of this behavior is proposed on the basis of the characterization results. From the applicative point of view it is possible to notice that this mixture, when properly processed, shows a onset temperature of the desorption of the whole hydrogen content about 150 K lower than MgH 2 , even on samples exposed to the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.