Abstract

Atomic force microscopy (AFM) has been used to study the effect of various photoinitiators doped into poly(methyl methacrylate) (PMMA) on the mechanical properties of PMMA films at the nanometer scale. Pure and modified PMMA films (containing four different photoinitiators) were exposed to a mercury vapor lamp in air atmosphere. Force–distance curves for hardness, Young modulus, and adhesion forces were obtained using different AFM modes (tapping or contact-mode) and different tips (diamond or silicon nitride). The results revealed that the added photoinitiators slightly changed the nanomechanical properties of PMMA as a result of alterations in the photochemical reactions and physical processes occurring in the studied systems. tert-Butyl peroxybenzoate had the most efficient effect on the measured parameters in UV-irradiated PMMA, whereas benzoyl peroxide was less active. The mechanism of the observed processes is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.