Abstract
Hydrogen-induced variations in mechanical behavior of zirconium alloys impose detrimental influence on nuclear fuel cladding integrity. This work reports a disappearance of intrinsic yield drop in a recrystallized zirconium alloy following hydrogen-charging treatment. Microstructure characterizations reveal that the nano-hydrides precipitation, mediated by second phase particles Zr(Fe,Cr)2 acting as hydrogen trapping sites, leads to emission of substantial dislocations in α-matrix grains due to strong strain concentrations, as identified by high-angular resolution EBSD. These mobile dislocations preserved at elevated temperatures can maintain the applied plastic strain and impede rapid dislocation multiplication as well, a conclusion validated by comparative analysis of dislocation densities prior to and near yielding stage. These findings are expected to shed light on the underlying mechanisms governing the interaction between hydrogen and microstructural defects in Zr-based nuclear fuel cladding materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.