Abstract
In this study, a nano-displacement measurement system is proposed and demonstrated both theoretically and experimentally, which was based on a modified Mach-Zehnder (M-Z) interferometer using two conjugated orbital angular momentum (OAM) beams. In contrast to the previous M-Z-based OAM interferometer, a reflection module is inserted into the reference arm instead of a simple mirror. As a result, the effect of the transverse position-dependence phase-shift caused by the dove prism can be clearly eliminated and a stable and robust (off-axis insensitive) petal-like interference pattern can be obtained successfully. More importantly, a significant rotation angle of the petal-like pattern vs. the tiny displacement of the tested object can be clearly observed. In accordance with the modified measurement setup, a novel phase-demodulation method enabling to quickly and accurately characterize the rotation angle of the petal-like interference-patterns is proposed and demonstrated also. A tiny displacement ranging from 50 to 800 nm with resolution of <inline-formula> <tex-math notation="LaTeX">$\sim 50$ </tex-math></inline-formula> pm has been measured successfully. The proposed approach may find applications in not only the ultra-high precision displacement sensor, but also the temperature, strain, and refractive index sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.