Abstract

The Mg-5Zn-2.5Er matrix composite reinforced with the in-situ synthesized Mg2Si second phase particles was fabricated via repeated plastic working (RPW) process. The microstructures and the nanocrystals in the composite have been investigated using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray (EDX). Great deals of nanocrystals were found in the matrix, and they were around the in-situ synthesized Mg2Si. The HREM analysis showed that the size of nanocrystals was in the range of 5-10 nm, and the difference in their crystallographic orientation was bigger than 15°. It is suggested that the formation of nanocrystals in the matrix is attributed to the RPW deformation process and to the intensive stresse fields around the in-situ synthesized Mg2Si particles, which suppress the growth of nanocrystals by forming nonequilibrium grain boundaries containing disordered dislocation networks and junction disclinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.