Abstract

The production of nano-calcium phosphate powders, such as HA (hydroxyapatite), from synthetic chemicals can be expensive and time consuming. The skeleton or shells of sea creatures (e.g. sea urchins, shells, corals) could be an alternative source of materials to produce very fine and even nano-structured calcium phosphate biomaterial powders. Ηydrothermal conversion under very high pressures or methods such as hot-plating (chemical) or ultrasonication (mechano-chemical), have been proposed to transform naturally derived CaCO3, e.g. aragonite, into apatite based materials. The aim of the present work was to prepare inexpensive nano-sized HA and TCP bioceramics powders from a local sea snail shells as a possible raw material for HA/TCP bioceramics. Empty shells of a local sea snail (Nassarius hinia reticulatus) from Marmara Sea, Turkey were collected from a beach near Istanbul. The collected shells were ground to a particle size <75µm. Thermal analyses (DTA/TGA) were performed to determine the exact CaCO3 content and thermal behavior. The raw powder was suspended in an aqueous media which was placed in an ultrasonic bath. The temperature was set at 80°C for 15min. Then, an equivalent (to CaO content) amount of H3PO4 was added drop by drop very gently into the solution. The reaction continued for 8h, following which the liquid component was evaporated off in an incubator at 100°C for 24h. The dried sediment was collected and heat treated at two different temperatures, 400 and 800°C. The morphology of the powders produced was examined using SEM. The crystalline phases were indentified using X-ray analysis. X-ray diffractograms indicated the presence of two calcium phosphate phases, namely HA and whitlockite. SEM observations showed that the powder produced comprised nano-sized particles. FTIR results also indicated the presence of HA and whitlockite structures. The experimental results suggest that Nassariushinia reticulatus shells could be an alternative source for the production of various mono or biphasic calcium phosphates. In this study, local sea snail shells were successfully converted to HA and whitlockite with a simple mechano-chemical (ultrasonic) conversion method without the use of complex hydrothermal methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.