Abstract

ABSTRACTPoly(2,2,3,4,4,4-Hexafluorobutylmethacrylate–random–glycidolmethacrylate) random copolymer (P(HFBMA-r-GMA)) was synthesized via free radical polymerization. The novel reactive random copolymer was incorporated to modify cycloaliphatic epoxy resins and obtain the nano- or micro- structured composites. The chemical structures of P(HFBMA-r-GMA) were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The morphology and light transmittance of the cured epoxy resins were observed by scanning electron microscopy (SEM), transmission electron microscope (TEM) and ultraviolet-visible spectrophotometry (UV-vis), respectively. It is indicated that the optical transmittance of composites were basically kept although the microphase separation occurred in the curing process, which has a profound influence on the mechanical properties and refractive indexes. The thermal properties, surface dewettability and water absorbency of the cured epoxy resins were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurement and immersion test respectively. The experimental results revealed that the values of glass transition temperatures (Tg), surface dewettability and water resistance were effectively improved by the high cross-linking density and the enrichment of the fluorinated random copolymer dispersing in the composites. With respect to the corresponding properties of the neat epoxy resin, P (HFBMA-r-GMA)-0.25 hybrimer embraced the relatively good comprehensive properties, making the modified epoxy resins as good candidates for LED encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.