Abstract

The activity of a hormone- and growth-factor-stimulated NADH oxidase of the rat liver plasma membrane responds to guanine nucleotides, but in a manner that differs from that of the classic trimeric and low-molecular-mass monomeric G-proteins. In the absence of added bivalent ions, both GTP and GDP as well as guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]) but not guanosine 5'[beta-thio]diphosphate (GDP[beta-S]) stimulate the activity over the range 1 microM to 100 microM. Other di- and tri-nucleotides also stimulate, but only at concentrations of 100 microM or higher. Added bivalent ions are not required either for NADH oxidation or guanine nucleotide stimulation. Bivalent ions (Mg2+ > Mn2+ > or = Ca2+) alone stimulate only slightly at low concentrations and then inhibit at high concentrations. The inhibitions are augmented by GDP or GTP [gamma-S] but not by GTP. Although the activity is the same, or less, in the presence of 0.5 mM MgCl2, GTP at 1-100 nM and other nucleotides at 0.1 mM or 1 mM still stimulate in its presence. The NADH oxidase is activated by mastoparan but aluminum fluoride is weakly inhibitory. Cholera and pertussis toxins elicit only marginal responses. Both the Mg2+ and the GDP and GTP[gamma-S] inhibitions (but not the GTP stimulations) shift to higher concentrations when the membrane preparations are first solubilized with Triton X-100. The results suggest a role for guanine nucleotides in the regulation of plasma membrane NADH oxidase, but with properties that differ from those of either trimeric or the low-molecular-mass G proteins thus far described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.