Abstract

Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD+ deficiency in qs-2 caused by mutation in NAD+ biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance. The elevated defense in qs-2 is resulted from activated jasmonate biosynthesis, critically hydroperoxidation of α-linolenic acid by the 13-lipoxygenase (namely LOX2), which is escalated via the burst of chloroplastic ROS-singlet oxygen (1O2). The NAD+ deficiency-mediated JA induction and defense priming sequence in plants is recapitulated upon insect infestation, suggesting such defense mechanism operates in plant stress response. Hence, NAD homeostasis is a pivotal metabolic checkpoint that may be manipulated to navigate plant growth and defense metabolism for stress acclimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.