Abstract

The challenges of sodium metal anodes, including formation of an unstable solid-electrolyte interphase (SEI) and uncontrolled growth of sodium dendrites during charge-discharge cycles, impact the stability and safety of sodium metal batteries. Motivated by the promising commercialization potential of sodium metal batteries, it becomes imperative to systematically explore innovative protective interlayers specifically tailored for sodium metal anodes. In this work, a NaBix/NaVyOz hybrid and porous interfacial layer on sodium anode is successfully fabricated via pretreating sodium with bismuth vanadate. The hybrid interlayer effectively combines the advantages of sodium vanadates and alloys, raising a synergistic effect in facilitating sodium deposition kinetics and inhibiting the growth of sodium dendrites. As a result, the modified sodium electrodes (BVO-Na) can stably cycle for 2000h at 0.5mAcm-2 with a fixed capacity of 1mAhcm-2, and the BVO-Na||Na3V2(PO4)3 full cell sustains a high capacity of 94 mAh g-1 after 600 cycles at 5C. This work demonstrates that constructing an artificial hybrid interlayer is a practical solution to obtain high performance anodes in sodium metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.