Abstract

Ribonucleoprotein (RNP) granules are higher order assemblies of RNA, RNA-binding proteins, and other proteins, that regulate the transcriptome and protect RNAs from environmental challenge. There is a diverse range of RNP granules, many cytoplasmic, which provide various levels of regulation of RNA metabolism. Here we present evidence that the yeast transcription termination factor, Nab3, is targeted to intranuclear granules in response to glucose starvation by Nab3’s proline/glutamine-rich, prion-like domain (PrLD) which can assemble into amyloid in vitro. Localization to the granule is reversible and sensitive to the chemical probe 1,6 hexanediol suggesting condensation is driven by phase separation. Nab3’s RNA recognition motif is also required for localization as seen for other PrLD-containing RNA-binding proteins that phase separate. Although the PrLD is necessary, it is not sufficient to localize to the granule. A heterologous PrLD that functionally replaces Nab3’s essential PrLD, directed localization to the nuclear granule, however a chimeric Nab3 molecule with a heterologous PrLD that cannot restore termination function or viability, does not form granules. The Nab3 nuclear granule shows properties similar to well characterized cytoplasmic compartments formed by phase separation, suggesting that, as seen for other elements of the transcription machinery, termination factor condensation is functionally important.

Highlights

  • In yeast, transcription by RNA polymerase II can be terminated in two major ways: The Nrd1-Nab3-Sen1 (NNS) pathway which primarily generates short noncoding transcripts, or the polyadenylation-coupled termination pathway, where termination is associated with nascent transcript cleavage and polyadenylation of the RNA [1]

  • Evidence is accumulating in favor of a model in which RNA metabolism takes place in compartments assembled through liquid-liquid phase separation by RNA-binding proteins that contain low complexity, prion-like domains [17, 18, 39]

  • Our results suggest that a compartment that harbors the hnRNP-like Nab3 termination factor, may employ such a mechanism in the nucleus

Read more

Summary

Introduction

Transcription by RNA polymerase II can be terminated in two major ways: The Nrd1-Nab3-Sen (NNS) pathway which primarily generates short noncoding transcripts, or the polyadenylation-coupled termination pathway, where termination is associated with nascent transcript cleavage and polyadenylation of the RNA [1]. The NNS termination pathway contains Nrd and Nab, essential RNA-binding proteins with canonical RNA recognition motifs (RRMs) [2,3,4,5,6,7]. Nab3’s prion-like domain and localization to a nuclear granule

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.