Abstract

Solid electrolytes (SEs) offer great potential as the basis for safer rechargeable batteries with high energy density. Aside from excellent ion conductivity, the stability of SEs against the highly reactive metal anode is also a prerequisite to achieve good performance in solid-state batteries (SSBs). Yet, most SEs are found to have limited thermodynamic stability and are unstable against Li/Na metal. With the combination of AC impedance spectroscopy, first-principles calculations, and in situ X-ray photoelectron spectroscopy, we unequivocally reveal that a NaSICON-structured Na3Zr2Si2PO12 electrolyte forms a kinetically stable interface against sodium metal. Prolonged galvanostatic cycling of symmetric Na|Na3Zr2Si2PO12|Na cells shows stable plating/stripping behavior of sodium metal at a current density of 0.1 mA cm–2 and an areal capacity of 0.5 mA h cm–2 at room temperature. Evaluation of Na3Zr2Si2PO12 as an electrolyte in SSBs further demonstrates its good cycling stability for over 120 cycles with very limited capacity degradation. This work provides strong evidence that Na3Zr2Si2PO12 is one of the few electrolytes that simultaneously achieve superionic conductivity and excellent chemical/electrochemical stability, making it a very promising alternative to liquid electrolytes. Our findings open up a fertile avenue of exploration for SSBs based on Na3Zr2Si2PO12 and related SEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.