Abstract
1. Excised inside-out patch recordings were used to describe a novel cation channel from cultured lobster olfactory receptor neurons that is activated by [Na+]i. 2. The channel is reversibly activated by intracellular Na+ as low as 5 mM. The half-effect concentration of intracellular Na+ is approximately 60 mM at -60 mV. The dependence of the channel open probability on [Na+]i is sigmoidal with a Hill coefficient of 3.1, indicating that more than one Na+ must bind to activate the channel. 3. The channel is equally permeable to Na+, K+, and Li+. In symmetrical 210 mM Na+, the open channel current-voltage relationship shows slight inward rectification at positive potentials. The slope conductance of the channel is 107 pS between -90 and 0 mV. 4. Although the channel is not activated by voltage in the absence of intracellular Na+, the gating of the channel is dependent on voltage as well as [Na+]i and [Na+]o. 5. Both intracellular Ca2+ and Mg2+ reversibly affect channel activity in a concentration-dependent manner starting at 1 microM. Ca2+ decreases both the open probability and the single channel amplitude, whereas Mg2+ decreases the open probability but has no effect on the single channel amplitude. Ba2+ (5 mM), but not 20 mM Cs+ and 100 microM amiloride, reversibly block the channel. 6. We speculate that this novel cation channel regulates neuronal excitability by accentuating the rate and/or the magnitude of depolarization of the cell to odors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.