Abstract

The association between ambient airborne fine particulate matter (PM2.5) exposure and respiratory diseases has been investigated in epidemiological studies. To explore the potential mechanism of PM2.5-induced pulmonary fibrosis, 60 mice were divided into 3 groups to expose to different levels of PM2.5 for 8 and 16 weeks: filtered air, unfiltered air, and concentrated PM2.5 air, respectively. BEAS-2B cells were treated with 0, 25, 50, and 100 μg/ml PM2.5 for 24 h. The biomarkers of pulmonary fibrosis, epithelial-mesenchymal transition, N6-methyladenosine (m6A) modification, and metabolism of mRNAs were detected to characterize the effect of PM2.5 exposure. The results illustrated that PM2.5 exposure induced pathological alteration and pulmonary fibrosis in mice. The expression of E-cadherin was decreased whereas vimentin and N-cadherin expression were increased in a dose- and time-dependent manner after PM2.5 exposure. Mechanistically, PM2.5 exposure increased the levels of METTL3-mediated m6A modification of CDH1 mRNA. As a target gene of miR-494-3p, YTHDF2 was upregulated by miR-494-3p down-regulation and then recognized m6A-modified CDH1 mRNA to inhibit the E-cad expression, consequently induced the EMT progression after PM2.5 exposure. Our study indicated that PM2.5 exposure triggered EMT progression to promote the pulmonary fibrosis via miR-494-3p/YTHDF2 recognized and METTL3 mediated m6A modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.