Abstract

Heterogeneous nanoparticles with synergistic effects between different composites are potential catalysts with bifunctional catalytic activity for oxygen reduction (ORR) and oxygen evolution reaction (OER). Herein, heteroatoms such as N and S are doped into graphene substrates to improve catalytic activity and structural stability of Ag-MnFe2O4 nanoparticles. Interestingly, these particles keep a primarily heterogeneous structure for their assembly on N, S-codoped graphene (NSG), while Ag domains shrink on S-doped graphene (SG) or N-doped graphene (NG). Subsequently, Ag-MnFe2O4/NSG shows the best bifunctional catalytic activity due to the improved stability of Ag-MnFe2O4 NPs on NSG and enhanced bonding energy between supports and particles. The Koutecky-Levich plots confirm a major four-electron reaction pathway for the ORRs on Ag-MnFe2O4/NSG. Meanwhile, Ag-MnFe2O4/NSG exhibits higher stability and better methanol tolerance than commercial Pt/C. Therefore, Ag-MnFe2O4/NSG with bi-functional catalytic activity for ORR and OER is a promising non-Pt catalyst candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.