Abstract

ABSTRACTWe investigated the possible drivers of the N:P stoichiometric shift and its relationship with micro-algal production of transparent exopolymeric particles (TEP) along a 35 km gradient of the Ganga River. The objective was to evaluate if the trade-off between N:P stoichiometry and production of TEP helps in maintaining water quality of the river. Mesocosm experiments were conducted to examine N:P-TEP linkages and its role in turbidity removal. In situ measurements did not show Si to be a limiting nutrient (N:Si < 1.3). The TEP production increased with decreasing N:P ratio and peaked at N:P::6:1 with dominance of Aulacosira granulata and Fragilaria intermedia. Settling efficiency, turbidity removal and sedimentation of TEP, biogenic silica (BSi) and biomass all increased with decreasing N:P ratio proportionately to the amount of TEP produced in the mesocosm. The study demonstrates that trade-off between N:P stoichiometry and the production of TEP generates feedback to buffer the ecological impacts of nutrient pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.