Abstract

Post-translational protein modification affects muscle physiochemistry. To understand the roles of N-glycosylation in this process, the muscle N-glycoproteomes of crisp grass carp (CGC) and ordinary grass carp (GC) were analyzed and compared. We identified 325N-glycosylated sites with the NxT motif, classified 177 proteins, and identified 10 upregulated and 19 downregulated differentially glycosylated proteins (DGPs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these DGPs participate in myogenesis, extracellular matrix content formation, and muscle function. The DGPs partially accounted for the molecular mechanisms associated with the relatively smaller fiber diameter and higher collagen content observed in CGC. Though the DGPs diverged from the identified differentially phosphorylated proteins and differentially expressed proteins detected in previous study, they all shared similar metabolic and signaling pathways. Thus, they might independently alter fish muscle texture. Overall, the present study provides novel insights into the mechanisms underlying fillet quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.