Abstract

Human protein C (hPC) is glycosylated at three Asn-X-Ser/Thr and one atypical Asn-X-Cys sequons. We have characterized the micro- and macro-heterogeneity of plasma-derived hPC and compared the glycosylation features with recombinant protein C (tg-PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N-glycans of hPC are complex di- and tri-sialylated structures, and we measured 78% site occupancy at Asn-329 (the Asn-X-Cys sequon). The N-glycans of tg-PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn-X-Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg-PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn-329 site. The N-glycan structures found for tg-PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N-glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.