Abstract

To realize large lithium storage capacity and excellent rate capability lithium ion batteries, highly electrochemically active materials and rational design of structure are desirable. Here, we successfully synthesized CoO@N-doped carbon nanowire arrays derived from zeolitic imidazolate frameworks-67 (ZIF-67) on Ni foam (denoted as CoO@N-C/NF). Each CoO@N-C nanowire was built up of numerous ordered in-situ nitrogen-doped carbon coated CoO nanoparticles (around 20 nm) after annealing treatment. Benefited from the unique structural features, when served as anode for lithium ion batteries, the CoO@N-C/NF exhibit superior initial Coulombic efficiency of 78.04%, and excellent electrochemical cyclability (1884.1 mAh g−1 at 1 A g−1 after 100 cycles) and good rate capability (1169.2 mAh g−1 at the rate of 5000 mA g−1). To our knowledge, this is the highest capacity with similar electric current density that has been reported for CoO-based materials. Our results indicate that the CoO@N-C/NF electrode without any auxiliary materials are expected to open up new opportunities for CoO-based material to power electronic devices.

Highlights

  • Great endeavors have been made to optimize the electrochemical properties of CoO-based electrodes

  • We demonstrate a simple and extensible strategy to obtain integrated and binder-free CoO@N-doped carbon nanowire arrays derived from zeolitic imidazolate framework-67 (ZIF-67) on Ni foam, in which each nanowire composed of ordered CoO nanoparticles encapsulated by nitrogen-doped carbon

  • The Ni foam was uniformly covered with the vertical CoO nanowire arrays with diameter of 50 nm and length of 1.5–2.5 μm (Fig. 2a,b)

Read more

Summary

Introduction

Great endeavors have been made to optimize the electrochemical properties of CoO-based electrodes. One-dimensional(1D) nanomaterials with hierarchical structures have been extensively developed and proved to be the optimal structure of electrochemical electrodes due to their better electron transport capacity, higher surface-to-volume ratios, and relatively lower volume change during the lithiation/delithiation processes compared with other higher dimensional nanomaterials[11,12,13]. These 1D nanomaterials usually need to be mixed with polymeric binder and carbon black, and further pressed onto current collector. Benefited from the the advantages listed above for lithium storage, the designed CoO@N-C/NF exhibited excellent lithium-storage capacity and good rate capability as anode materials for LIBs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.