Abstract

A micro/nanofluidic device containing linearly arranged gold nanoparticles embedded in nanochannels was developed for highly sensitive surface-enhanced Raman spectroscopy (SERS). The Si nanochannel array was fabricated using a photolithography-based process. Synthesized colloidal particles of mean diameter 100 nm were arranged linearly in the nanochannels, using a nanotrench-guided self-assembly process. The particle geometry provides significant Raman enhancement by matching the polarization direction of the incident light to the connection direction of the particles. The SERS spectrum was obtained from 1 mM 4,4’-bipyridine solution using the fabricated micro/nanofluidic SERS device. The directionally arranged particles showed the same polarization angle dependency as the simulated result. The molecule was detected from 10 pM solution using the particle arrangement. We confirmed that the particle arrangement was appropriate for highly sensitive SERS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.